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Synopsis 

The flow of power-law liquids through tapered dies has been analyzed in an earlier paper.’ We 
now consider a taper which is additionally streamlined so as to make the transition from a broad 
and sluggish flow to a flow which is narrow and fast and as smooth as possible. This involves (1) 
the rational selection of an appropriate taper function within the relevant flow geometry and (2) 
the integration, between limits, of that function. 

Introduction 

In an earlier paper1 it was shown how expressions can be derived for the 
pressure drop during flow in tapered wide-slit and “cylindrical” (strictly speaking, 
conical) channels. 

In polymer melt processing i t  is common practice to slightly taper the die 
channel since this has proved to be beneficial with respect to product quality. 
In particular, the use of cone tapered dies with taper angles not exceeding 10’ 
were found to make it possible to obtain a uniform polymer extrudate with good 
surface characteristics a t  head pressures which are up to an order of magnitude 
higher than the maximum pressure at  which an acceptable quality could still be 
obtained when extruding through a parallel sided (i.e., cylindrical) die. 

We now consider the case when the whole of the die entrance region is inte- 
grated into the die itself. This is particularly significant in view of the well- 
known fact that the die entrance is a region where major flow discontinuities due 
to melt elasticity, partial stagnation flow, and “melt fracture” arise which, unless 
suppressed during subsequent passage through the die proper, are liable to cause 
extrudate defects of varying degrees of severity. To minimize or eliminate these 
defects the processor often has to accept irksome limitations on the output 
rate. 

While die tapers are undoubtedly highly effective in improving the situation, 
it was considered that an ultimate optimization can only be attained by 
streamlining the die entrance region as much as possible. This requires the 
selection of a suitable function which is essentially conicocylindrical and which 
defines the distance of the wall from the die axis a t  each point in terms of any 
given distance along that axis. The axis itself is positioned such as to give the 
desired entrance and exit radii. 

We consider that the die has its optimum shape when the following criteria 
are met: 

1. The tangents to the die wall at the entrance and exit must be parallel to the 
central axis. 
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2. The longitudinal course of the die wall (i.e., the radiudlength function) must 
be sigmoid and antisymmetrical about a point midway between entrance and 
exit-that is to say, it has a point of inflexion a t  what is the origin of the coordi- 
nate system in Figure 1. 

3. The tangent to the die wall at  the midpoint shall be defined by a taper angle 
0 which is less than 10". Since the problem requires numerical solution (as will 
be seen presently), we have arbitrarily selected just three taper angles 19 such that 
cot B has values of 6, 10, and 20 and solved for these angles only, rather than 
continuously varying values within that range of taper angles. 

Solution 

We consider that the lengthhadius function is a quintic of the general form 

(1) 

in which the coefficients b and d are taken to be zero in order to satisfy condition 
2 above. We require that this function should have a symmetrical shape as de- 
picted in Figure 1, and this imposes certain conditions on the values of a ,  c, e ,  
and f .  It is seen that this function has a maximum and a minimum. At the origin 
the tangent to the curve does not have a zero slope. We consider this point to 
be a point of inflexion and stipulate that its slope (cot f l )  should have one of the 
three numerical values stated above, namely, 6,10, or 20. 

Taking the center portion (i.e., the portion between the maximum and mini- 
mum only) and rotating i t  around an axis parallel with the tangents at  the 
maximum and minimum, we generate a channel with a circular cross section along 
its entire length, the radius r of which at  any point 1 between entrance and exit 

r = a15 + b14 + c13 + d12 + el + f 
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Fig. 4. Graph of -APIqQ" vs n for channel shapes with Rz = 0.1 

is given by eq. (1). The entrance and exit radii R1 and R2, the overall die length 
L ,  and the slope a t  the conventional point of inflexion m are obviously related. 
In practice, R1 and Rz will be fixed by the screwlbarrel and extrudate design 
respectively, and the overall die length L will be determined by the slope m. A 
die of this type is diagrammatically shown in Figure 2. 

As has been seen in the earlier publication,' the pressure drop in a truly cy- 
lindrical circular channel for a power-law liquid is given by 

where 17 = coefficient of viscosity, n = the power index (usually between 0.3 and 
0.7 in polymer melts), R = the (constant) die radius, and Q = the volume output. 
If the die radius is not constant, as in cone-tapered dies and in the streamlined 
dies which are the subject of this paper, then it becomes necessary to consider 
the pressure gradient dP, given by modifying eq. (2): 
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Fig. 6. Graph of -At’/@* vs n for channel shapes with Rz = 0.6. 

where dl is a simple trigonometric function of r,  namely, 

d l  = -dr cot 6 (4) 
and r is the radius at any point 1 along the longitudinal axis between 0 and L. 

Substituting into eq. (3)  and integrating between the limits of R1 and R2 gives 
the overall pressure drop 

271 cot 0 Q(3n + 1) R 3n ..=--[ 3n ~n ]nRn-3n[l  - (2) ] 
This is the solution for cone-tapered dies. 

In the streamlined dies which we are now considering, we proceed in the same 
way in principle, but we encounter difficulties in solving the corresponding in- 
tegral 

that is, 
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The constants a, c, e,  and f must first be found in terms of the given geometric 
(design) constants. It is also requried that F(1) has no maxima or minima for 
-L/2 < 1 < L/2: 

dr  
- = 0 
dl 

when 5a14 + 3c12 + e = 0 

Thus, 
20a 

1/9c2 + - 
3c m 
f 

10a 1 Oa 
If a > 0, one value of l2  is negative and the other must be L2/4 so that condition 
(d), defined later, is satisfied. If a = 0, then l 2  = L2/4 is a double root, and con- 
dition (d) is satisfied. 

If a < 0, the requirement that there be no solutions for -L/2 < I < L/2 means 
that the smaller of the two solutions for l 2  must be L2/4, and so it is necessary 
that L2/4 < -3cI10a. Simplifying and letting y = L / [ m ( R 1  - R2)] (> 0 )  
gives 

4 < 10 ray 24- + 16y lo) 

which is 
8y - 15 3 15 

or - < y < -  
8 

O<- 
3 - 2y 2 

It is thus essential that 

3 15 
- m ( R I -  R2) < L < - m ( R I -  R2) 
2 8 

We have considered dies for which the value of L comes anywhere within this 
range. The results are not very sensitive to this small variation in L ;  and so, in 
this paper, we take the midpoint value only: 

27 
16 

L = -m(R1- R2) 

If F ( r )  = a15 + el3 + el + f, the required conditions are: (a) F(-L/2) = R1 is 
a maximum point; (b) F(L/2)  = R2 is a minimum point; (c) a t  1 = 0, drldl = - 
l l m ,  where m = 6,10, or 20; (d) F(1) has no maxima or minima for -Ll2 < 1 < 
L/2. 

Condition (c )  gives e = - l /m and the requirement that drldl = 0 at 1 = f L l 2  
leads to 

5 3 1 
- aL4 + - cL2 - - = 0 
16 4 m 

Condition (b) also leads to 

+ f  
a C 1 R - - L 5 + - L 3 - - L  

2 -  32 8 2m 
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Fig. 8. Graph of - A P / T Q "  vs n for channel shapes with R Z  = 1.0. 

and (a) gives 
a c 1 
32 8 2m 

R1 = - -L5 - - L3 + - L + f 
Hence, adding 

and subtracting, 

R1 i- Rz = 2 f  

a C L 
16 4 m 

R z  - R1 = -L5 + -L3 - - 

Combining eqs. (8) and (10) gives equations for a and c. Thus, we have found 
a, c, e, and f in terms of R1, Rz, L, and m: 

3 m  

8 10 
mL2 L3 c = - - -  (Ri - R z )  
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1 
m 

e = - -  

1 
2 f = - ( R i  + R z )  

The integral (7) cannot be evaluated by analytical methods, and so a numerical 
approach must be used. Values of 0.1,0.6, and 1.0 were taken for Rz; and for each 
of these, R1 was taken such that 

Then, in each of these cases m was taken as 6,10, and 20. Thus, 27 essentially 
different channel shapes were considered although our method will apply to any 
channel in which 6 S m S 20 and 0.1 S R2/R1 S0.9. 

The evaluation of (7) has then performed for n = 0.30,0.50, and 0.70. The 
method used was the trapezoidal rule together with Romberg’s extrapolation 
method.2 This technique is available as a subroutine in the IBM Scientific 
Subroutine Package. The value of 

was found, and graphs were produced of - AP/qQn versus n for each channel 
shape. The graphs (see Figs. 3-8) are grouped by outlet radius (Rz) so that there 
are three sets of graphs corresponding to RZ = 0.1,0.6, and 1.0. Each set contains 
a curve for each of nine different channel shapes and the letters A6, B10, etc., 
correspond to the channel shapes labeled A, B, etc., with m = 6, 10, . . . etc. 
Notice that the - AP/VQn scales on the graphs are very different in each of the 
three sets. 
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